Programação Paralela em Arquiteturas Multi-Core/Aplicações Internet: diferenças entre revisões

fdfs
[edição não verificada][edição não verificada]
(ortografia; formatação)
(fdfs)
== Introdução ==
 
A Internet é um conglomerado de redes em escala mundial de milhões de computadores interligados pelo [[w:Protocolo de Internet|Protocolo de Internet]] que permite o acesso a informações e todo tipo de transferência de dados. A Internet é a principal das novas tecnologias de informação e comunicação (NTICs). Ao contrário do que normalmente se pensa, Internet não é sinónimo de World Wide Web. Esta é parte daquela, sendo a [[w:World Wide Web|World Wide Web]], que utiliza hipermídia na formação básica, um dos muitos serviços oferecidos na Internet. De acordo com dados de março de 2007, a Internet é usada por 16,9% da população mundial[http://www.internetworldstats.com/stats.htm].
 
Neste capítulo abordaremos sobre algumas aplicações paralelas que existem na Internet. Falaremos primeiro sobre aplicações para a infra-estrutura da rede mundial de computadores, depois sobre aplicações distribuídas e por último sobre algumas linguagens que permitem a construção de aplicações paralelas para a Internet.
 
== Aplicações para infra-estrutura ==
 
=== Banco de Dados ===
 
Sistemas de banco de dados altamente paralelos estão começando a substituir os tradicionais [[w:Mainframe|mainframes]] para maiores bancos de dados e tarefas de transações.
 
A partir da hegemonia do [[w:Modelo relacional|modelo de dados relacional]], sistemas de [[w:Banco de dados relacional|banco de dados relacionais]] começaram a aparecer no mercado. As consultas relacionais são idealmente convertidas para execução em paralelo, pois elas consistem em operações uniformes aplicadas a conjuntos de dados uniformes. Cada operação produz uma nova relação, então as operações podem ser decompostas em fluxos de dados altamente paralelos.
 
Ao utilizamos a saída de um operador na entrada de outro, os dois operadores podem trabalhar em série, o que gera um [[w:Pipeline|pipeline]] paralelo. Podemos também particionar os dados de entrada entre vários [[w:Processador|processadores]] e [[w:Memória (computador)|memórias]], pois uma operação pode, com grande freqüência, ser dividida em várias operações independentes, cada um trabalhando em uma parte dos dados. Esta divisão de dados e execução gera um paralelismo particionado.
 
[[Imagem:Bdparalelo.png]]
 
Esta técnica requer uma comunicação entre os sistemas de bancos de dados paralelos, seja através de mensagens, seja através de recursos compartilhados ou de outros métodos possíveis. Esses métodos se baseiam na [[w:Arquitetura de software|arquitetura]] do sistema de banco de dados.
 
Apesar do grande número de arquiteturas de sistemas de banco de dados paralelos e [[w:Computação distribuída|distribuídos]], há um consenso quanto ao uso da arquitetura sem compartilhamento. Nesses sistemas, as duplas de cada relação no banco de dados são particionadas dentre as unidades de disco que estão ligadas diretamente a cada processador. Isso permite que vários processadores possam buscar em grandes relações paralelamente sem precisar de dispositivos de [[w:E/s|E/S]] sofisticados.
 
==== Otimização de consultas em paralelo ====
 
Os otimizadores de consultas a banco de dados não consideram todos as possíveis formas de otimização em uma consulta relacional devido a sua [[w:Complexidade (informática)|complexidade]] e, apesar dos modelos de custos para consultas relacionais executadas em um único processador serem bem conhecidos, eles ainda dependem de [[w:Estimador|estimativas]] de custo, que no melhor caso, adivinham.
 
[[w:Algoritmos|Algoritmos]] paralelos para cada operação e organização das [[w:Árvore (estrutura de dados)|árvores]] de consultas podem ser usados para aumentar significativamente o número de otimizações possíveis encontradas a cada consulta, aumentando consideravelmente a velocidade das consultas.
 
=== Protocolos paralelos ===
 
O aumento da demanda por conteúdo [[w:Multimidia|multimídia]], atualizações dentre outros, tornaram os servidores distribuídos cada vez mais utilizados para suprir esta demanda, sem o congestionamento na transmissão e falha do servidor por falha em um ponto único, que são problemas comuns de servidores centralizados. Além disso, servidores centralizados só podem responder a um número limitado de clientes, devido ao limite de conexões.
 
Servidores distribuídos permitiram que recursos sejam disponibilizados em pontos de grande demanda, aliviando o problema de congestionamento em servidores centralizados. Apesar disso, as [[w:Taxa de transferência|taxas de transferências]] continuam as mesmas dos servidores centralizados, pois apenas um nó no sistema distribuído realiza a transferência. Paralelismo pode melhorar a transmissão.
 
O objetivo dos protocolos paralelos é provê suporte a transferências de [[w:Arquivo de computador|arquivos]] paralelas em servidores distribuídos.
 
[[Imagem:Protocolodist.png]]
 
Os protocolos têm que resolver problemas como:
 
* descobrir aonde o arquivo existe no servidor distribuído
* distribuir a tarefa entre os servidores selecionados
* transmitir o arquivo em seguimentos paralelos
* unir o arquivo automaticamente
* recuperar segmentos perdidos
 
Além disso, existem dois problemas básicos ao utilizar [[w:Download|''download'']] distribuído: [[w:Balanceamento de carga|balanceamento de carga]] dinâmico e transparência ao usuário.
 
Enquanto o ''download'' está ocorrendo, a carga dos servidores deve ser checada para garantir que a carga continue baixa, senão o desempenho é reduzido. Quando um servidor ultrapassa sua capacidade, replicas são migradas para outros servidores até o servidor carregado atinja o nível adequado de carga. Se a demanda for muito alta, uma replica é criada ao invés de migrada e é destruída se a demanda for baixa.
 
Balanceamento dinâmico de carga é essencial para manter transmissões efetivas de arquivos. Apesar de manter a demanda no máximo parecer lógico, as vezes, isto atrapalha a transmissão. Focar somente na demanda gera outros problemas na rede como congestionamento, o que degenera o propósito dos sistemas distribuídos.
 
A transparência ao usuário, permite sistemas de software mudem sem alterar os sistemas ao redor, usando [[w:Interface (programação)|interfaces]]. A transparência é obtida ao construir uma interface para o sistema e depois construir os sistemas ao redor baseados na interface. Ao realizar isto, o sistema atrás da interface pode ser mudado sem afetar os sistemas em volta.
 
Os protocolos paralelos devem ser transparentes ao usuário e a outras aplicações, para que possam ser compatíveis com as aplicações atuais e outros protocolos.
 
== Aplicações distribuídas ==
 
Uma aplicação distribuída consiste de um conjunto de processos de aplicação que interagem por meio de mensagens. É uma aplicação na qual os programas que a compõem são distribuídos entre dois ou mais computadores interconectados em uma rede, como a Internet por exemplo.
 
O objetivo desta subseção é mostrar algumas aplicações distribuídas muito comuns e importantes na Internet hoje em dia, como o Grid (Computação em Grade), as redes Peer-to-Peer e os Web Crawlers.
 
=== Grid ===
 
==== Definição ====
 
A computação em grade (do Inglês ''[[w:en:Grid computing|grid computing]]'') é um modelo computacional capaz de alcançar uma alta taxa de processamento dividindo as tarefas entre diversas máquinas, podendo ser em rede local ou rede de longa distância, que formam uma [[w:en:Virtual machine |máquina virtual]]. Esses processos serão executados no momento em que as máquinas não estão sendo utilizadas pelo usuário, evitando assim o desperdício de processamento da máquina utilizada. A metáfora adotada na computação em grade é a da rede elétrica (''grid'', em inglês). Isto é, o poder computacional deveria estar disponível na Internet da mesma forma que energia elétrica está disponível na tomada: sob demanda e de maneira transparente.
 
Uma experiência de integração de processamento distribuído é o projeto [http://setiathome.ssl.berkeley.edu/ SETI@home], uma continuação do projeto da NASA de busca de inteligência extraterrestre. Usando um software que pode ser baixado pela Internet, um microcomputador pode analisar sinais do rádio telescópio de Arecibo. Atualmente, existem 4 milhões de assinantes em 224 países, criando um computador virtual com uma performance de 20 Tflops.
 
Um outro exemplo são as famosas redes peer-to-peer, como Emule (Edonkey), Kazaa, Gnutella, em que se compartilham arquivos por exemplo, mas sem nenhum controle de acesso e não interoperam entre si. Com a evolução dessas aplicações elas acabaram por inter-operar e haverá uma convergência de interesses entre computação ponto a ponto, Internet e computação em grade.
 
A diferença existente entre a computação distribuída e computação em grade se dá pelo fato de que a computação distribuída é um conceito que vem dos anos 80 e 90, e consiste na possibilidade de resolver um determinado problema computacional através da utilização de diferentes recursos distribuídos geograficamente. A computação distribuída passa a ser uma “Computação em Grade” no momento em que existe uma infra-estrutura física e uma infra-estrutura lógica (software) que permita coordenar os trabalhos que vão ser processados e garantir a sua qualidade de serviço.
 
O surgimento das ''Grids'' Computacionais nasceu da comunidade de Processamento de Alto Desempenho (PAD). O conceito foi apresentado pelos pesquisadores Ian Foster e Carl Kesselman, sendo composto por uma infra-estrutura de hardware e software que permite-nos acesso a grandes capacidades computacionais geograficamente distribuídas, de forma confiável, consistente, econômica e persistente. Na verdade o conceito é antigo, mas com uma nova dinâmica, em que se pode utilizar a capacidade de computação (ex. Storage/CPU) sem ter que se preocupar de onde vem, como é mantida, fazendo uma metáfora às redes elétricas.
 
Chamamos de Organização Virtual (VO) quando temos participantes que desejam compartilhar recursos para poder concluir uma tarefa. Além disso, o compartilhamento esta além de apenas troca de documentos, isto pode envolver acesso direto a software remoto, computadores, dados, sensores e outros recursos.
 
[[Image:VirtOrg.png|thumb|right|Organizações Virtuais acessando diferentes e sobrepostos conjuntos de recursos]]
Grids são construídos como um grupamento de serviços básicos independentes. Um aspecto essencial dos serviços de Grid é que esses estão disponíveis uniformemente através dos ambientes distribuídos na Grid. Os serviços são agrupados em um sistema integrado, também chamado de ''middleware''. Exemplos de ferramentas atuais de Grid incluem Globus, Legion, OpenGrid, AppLeS.
 
O Grid permite também o uso de técnicas de programação paralela por passagem de mensagens. O ambiente MPI ("Message Passing Interface") está disponível no Grid através da versão MPICH-G2 (versão portátil do MPI para o Globus). O padrão MPI define uma biblioteca de rotinas que implementam uma comunicação ponto a ponto, em que a operação "send" é usada para iniciar uma transferência de dados entre dois programas concorrentes e a operação "receive" é usada para obter dados do sistema no espaço de memória da aplicação; existem ainda operações coletivas envolvendo múltiplos processos. Mas que devido a alta latência provocada na comunicação entre processos, as aplicações devem ser construídas com uma granularidade bem projetada de tal forma que se comuniquem o mínimo possível. Então, as aplicações mais adequadas ao Grid são as que possuem tarefas independentes (bag of tasks), pois as tarefas não dependem da execução de outras e podem ser executadas em qualquer ordem.
 
A Internet surgiu no início da década de 70 com o objetivo de interligar diferentes ambientes computacionais e geograficamente dispersos. Os ''web sites'' desenvolvidos pela indústria sempre foram interoperáveis em relação usuário-''site'', por meio de aplicações criadas neste contexto, em que o usuário dispõe de um menu de serviços fechados. O que ocorre em um ambiente de ''Grid'' é o inverso, onde o usuário tem de submeter suas aplicações para serem resolvidas dentro do ambiente por ele montado.
 
Um ambiente de ''cluster'' constitui em um sistema formado por hardware e software conectados em um local apenas, servindo a usuários que estão trabalho somente em um projeto, usado exclusivamente para resolver os problemas computacionais de uma determinada organização. Por outro lado, um ''Grid'' presta serviços de uma forma geograficamente distribuída. Em um ''cluster'', os recursos são gerenciados por uma entidade central, e os computadores agem como se fosse um único dispositivo. Nas configurações em ''Grid'', cada "organização virtual" faz o gerenciamento de seus recursos não tendo a visão de uma imagem única do sistema. Ou seja, o usuário tem consciência dos diversos serviços disponíveis e que deverá requisitá-los para sua utilização. Portanto, os ''Grids'' são mais heterogêneos, complexos e distribuídos.
 
==== Benefícios e Desafios ====
 
Um ''Grid'' possui muitos benefícios, entre os quais podemos citar:
 
*Organizações podem agregar recursos - a computação em ''Grid'' permite que as organizações possam agregar recursos com toda a infraestrutura dos ITs, não importando localização global. Isso elimina situações onde um ''site'' esteja sendo executado com sua capacidade máxima, enquanto outros tenham ciclos disponíveis.
 
*Poderosa plataforma de suporte a Organizações Virtuais - organizações podem melhorar dramaticamente sua qualidade e velocidade de produtos e serviços disponibilizados, enquanto os custos de IT são reduzidos por habilitar a colaboração transparente dos recursos compartilhados
 
*Acesso distribuído a diversos tipos de recursos - permite que empresas acessem e compartilhem bases de dados de forma remota. Isto é essencialmente benéfico para as ciências da saúde ou comunidades de pesquisa, onde volumes grandiosos de dados são gerados e analisados durante todo dia.
 
*Colaboração entre centro de pesquisas - possibilita a larga dispersão das organizações para que facilmente possam colaborar em projetos pela criação da habilidade do compartilhamento de tudo, desde aplicações a dados, até projetos de engenharia, etc.
 
*Melhor utilização de largura de banda - pode-se criar a mais robusta e resistente infraestrutura de informações.
 
*Aproveitamento de recursos ociosos – pode-se aproveitar os ciclos de processamento ''idle'' disponíveis dos PCs ''desktops'' que se encontram em várias localidades pelo planeta. Por exemplo, os computadores que se encontram tipicamente ociosos durante a noite de uma empresa em Tóquio pode ser utilizado durante o dia para operações na América do Sul.
 
A computação em grade, por ser uma tecnologia ainda muito recente, possui muitos desafios operacionais e de pesquisa a serem combatidos. Apenas para exemplificar, citamos alguns deles:
 
*Localização dos recursos
*Reserva de recursos
*Capacidade para adaptar- se a mudanças no ambiente
*Criação e escalonamento das tarefas
*Autonomia de cada grupo participante para definir suas próprias políticas de segurança
*Recursos requisitados podem estar em diferentes localidades
*Qualidade de serviço exigida por cada aplicação
 
==== Conclusão ====
 
O ''Grid Computing'' é um desafio bem maior do que formas mais simples de computação paralela e distribuída. Hoje, a maioria dos projetos de ''Grid'' permanecem localizados nos centros de supercomputação e laboratórios universitários. Os centros de pesquisa são ligados a conexões em rede cerca de 20 vezes mais rápidas do que as conexões de banda largas normais, são equipadas com sistemas de armazenamento capazes de lidar com vastos arquivos de dados e com computadores de alta performance. O ''Grid Computing'' é um conceito sobre o qual existe ainda uma grande expectativa e que poderá evoluir em diferentes direções, mas que é já hoje entendido como a próxima geração da ''Web'' para a comunidade científica.
 
=== Peer-to-Peer ===
 
==== Definição ====
 
[[Image:P2P-network.svg|thumb|200px|Exemplo de uma rede Peer-to-Peer.]]
[[Image:Server-based-network.svg|thumb|200px|Exemplo de uma rede de servidor. (Não Peer-to-Peer)]]
 
As redes '''Peer-to-Peer (P2P)''' são um modelo de comunicação em que todas as partes possuem as mesmas capacidades e responsabilidades, podendo também iniciar uma seção de comunicação. Difere do modelo de cliente/servidor, no qual alguns computadores são dedicados a servirem dados a outros. Os computadores que constituem a rede não possuem um papel fixo de cliente ou servidor, pelo contrário, costumam ser considerados de igual nível e assumem o papel de cliente ou de servidor dependendo da transação sendo iniciada ou recebida de um outro ''peer'' da mesma rede.
 
Os nós da rede Peer-to-Peer podem diferir em termos de configuração local, capacidade de processamento, capacidade de armazenamento, largura de banda, entre outras características particulares. O primeiro uso da expressão Peer-to-Peer foi em 1984, com o desenvolvimento do projeto Advanced Peer-to-Peer Networking Architecture na [[w:en:IBM|IBM]].
 
O termo é também utilizado em diferentes tecnologias que adotam o modelo conceitual ponto-a-ponto, tais como o protocolo [[w:en:NNTP|NNTP]] (para Usenet News), [[w:en:SMTP|SMTP]] (para envio de ''e-mails'') e sistemas de trocas de mensagens instantâneas ([[w:en:MSN|MSN]], [[w:en:ICQ|ICQ]], [[w:en:Gtalk|GTalk]]).
 
Na Internet, Peer-to-Peer é um tipo de rede transiente que permite a um grupo de computadores usuários com um mesmo programa conectarem e terem acesso direto a arquivos no disco rígido um dos outros. Esses programas de compartilhamento de arquivos, como por exemplo o [[w:en:Napster Napster]], [[w:en:Emule|eMule]] e [[w:en:Kazaa|Kazaa]], entre outros, forma responsáveis por popularizar o termo P2P.
 
Há também outros tipos de recursos podem ser compartilhados em redes Peer-to-Peer, tal como capacidade de processamento de máquinas, espaço de armazenamento de arquivos, serviços de software (analogamente aos [[w:en:Web services|Web Services]]), entre outros.
 
==== Arquitetura e classificação ====
 
As redes Peer-to-Peer podem ser classificadas em relação o seu uso.
 
* Compartilhamento de arquivos
* Telefonia
* [[w:en:Streaming media|Streaming de midia]], como áudio e vídeo
* Fóruns de discussão
 
Outra classificação possível para as redes Peer-to-Peer é em relação ao grau de centralização delas. Algumas aplicações são baseadas em arquiteturas cliente/servidor para algumas tarefas críticas como a indexação de informações, por exemplo. Outras aplicações usam uma arquitetura Peer-to-Peer pura, sem nenhuma centralização de tarefas. Essa arquitetura completamente descentralizada faz com que os usuários tenham o mínimo de contato com o servidor central, o que provém maior escalabilidade do sistema.
 
As aplicações Peer-to-Peer puras são raras. Em geral é utilizada uma arquitetura híbrida, utilizando alguns elementos centralizadores na execução de algumas tarefas cujo desempenho é crítico. As questões de desempenho são o que induzem a uma centralização parcial das atividades em ''peers'' de maior capacidade.
 
Nas arquiteturas puras, os ''peers'' são iguais, fazendo os papéis de clientes e servidores. Não há um servidor central para controlar a rede, nem um roteador central. Nas arquiteturas híbridas há um servidor central para manter informações sobre os ''peers'' e atender a requisições pelas informações. Os ''peers'' são responsáveis por armazenar dados, deixar o servidor central saber quais arquivos eles querem compartilhar, e disponibilizar os dados a outros ''peers'' quando eles requisitarem.
 
Os ''peers'' numa rede Peer-to-Peer são considerados nós na rede. Existe uma ligação entre quaisquer dois nós que se conhecem, isto é, ''peers'' que sabem a localização do outro na rede. Baseando nisso, as redes Peer-to-Peer também podem ser classificadas como estruturadas ou não-estruturadas.
 
As redes não-estruturadas são formadas quando as ligações são estabelecidas arbitrariamente. São redes que podem ser facilmente construídas quando novos ''peers'' querem entrar na rede, já que basta que ele copie ligações existentes de outro nó da rede e então o novo vai formando suas próprias ligações ao longo do tempo. Nessas redes, se um ''peer'' deseja um dado é necessário fazer uma busca pela rede para achar os ''peers'' que podem disponibilizar o dado. A desvantagem dessas redes é que nem sempre se encontraram ''peers'' para disponibilizar um dado em determinado momento. Os arquivos mais populares são mais fáceis de se encontrar do que um arquivo raro.
 
Uma rede estruturada possui um consistente protocolo global para assegurar que qualquer nó possa distribuir eficientemente um caminho a algum ''peer'' que possui o arquivo que ele busca, mesmo que seja raro. Para isto ser possível é necessário um padrão mais estruturado de ligações.
 
==== Vantagens ====
 
Um fato importante numa rede Peer-to-Peer é que todos os clientes disponibilizam recursos, incluindo largura de banda, espaço de armazenamento e poder computacional. Então, se chega um novo ''peer'', a demanda no sistema aumenta, mas a capacidade total do sistema também aumenta junto, fato que não é verdade numa estrutura cliente/servidor com um número fixo de servidores, onde a adição de novos clientes pode significar uma transferência de dados mais lenta para todos os clientes.
 
A distribuição natural nas redes Peer-to-Peer também aumenta a robustez do sistema em caso de falhas replicando os dados entre os ''peers'' e, nas redes puras, possibilitando aos ''peers'' encontrar os dados sem passar por um servidor central.
 
==== Conclusão ====
 
O interesse nas redes Peer-to-Peer é muito grande por parte de empresas e estudos acadêmicos devido ao poder de comunicação e distribuição de dados que elas podem oferecer. Grandes esforços são feitos para garantir a qualidade dos dados, já que há diversas formas de ataques maliciosos nessas redes, além da qualidade da transmissão e distribuição dos dados.
 
=== Web Crawlers ===
 
Uma outra aplicação interessante do paralelismo na internet é na construção de ''Web crawlers'', também conhecidos como [[w:en:Web crawler|robôs]]. Um ''crawler'' é um programa que coleta e armazena páginas da Internet, sendo muito utilizados em [[w:en:Search machine|máquinas de busca]].
 
==== Definição ====
 
Um ''crawler'' geralmente começa a funcionar a partir de um conjunto inicial de [[w:en:Uniform Resource Locator|URLs]], <math>S_{O}</math>, armazenadas numa fila. Partindo do conjunto inicial, o crawler pega alguma URL, em alguma ordem pré-definida, coleta a página, extrai novas URLs encontradas a partir da página coletada, e insere essas novas URLs na fila. O processo se repete até que o crawler decide parar. As páginas coletas podem ser utilizadas para aplicações como em máquinas de busca, em Web [[w:en:Cache|caches]] ou em estudos científicos, por exemplo.
 
Com a expansão diária do tamanho da Web, fica cada vez mais difícil coletar toda ou uma significante parte da Web em um só processo. Então, a paralelização dos Web crawlers se tornam uma medida essencial para maximizar a taxa de captura dos dados.
 
A construção de Web crawlers paralelos tem muitas vantagens mas trazem também alguns problemas e desafios interessantes. Entre eles, podemos citar:
 
*Sobreposição: com muitos processos rodando em paralelo para coletar páginas, é possível que diferentes processos coletem uma mesma página múltiplas vezes.
 
*Qualidade: geralmente é mais interessante coletar as páginas mais "importantes" primeiro, a fim de maximizar a "qualidade" dos dados coletados. Em crawlers paralelos, cada processo pode não ter conhecimento da imagem de toda a rede coletada, tomando decisões de acordo com a imagem local da parte que coletou.
 
*Banda de Comunicação: periodicamente os processos precisam se comunicar para prevenir a sobreposição de dados ou melhorar a qualidade da coleta. Entretanto, essa comunicação pode crescer bastante à medida em que o número de processos aumentam.
 
A paralelização dos web crawlers nos trazem importantes vantagens em relação aos crawlers não paralelizados, como:
 
*[[w:en:Scalability|Escalabilidade]]: devido ao enorme tamanho da Web, é quase que uma obrigação utilizar crawlers paralelos. Um crawler de um único processo simplesmente pode não atingir a taxa de coleta desejada em certos casos.
 
*Dispersão: os múltiplos processos de um crawler paralelo podem rodar em lugares geograficamente distantes, cada um coletando dados de locais próximos geograficamente. Por exemplo, um processo no Brasil pode coletar páginas dos países da América do Sul, enquanto um outro processo na Alemanha coleta dados da Europa. Essa dispersão pode ser necessária quando um crawler serial não consegue lidar com uma carga pesada de uma coleta em larga escala.
 
*Redução: um crawler paralelo pode também reduzir a carga na rede. Por exemplo, assuma que um crawler na América do Norte precise coletar uma página da Europa. Primeiramente, a página deve ir pela rede na Europa, passando pela rede inter-continental Europa-para-América do Norte, e finalmente passa pela rede na América do Norte. Se um processo de um crawler paralelo coleta todas as páginas européias, e outro processo coleta as páginas da América do Norte, então o tráfego total na rede será reduzido.
 
Note que as páginas coletadas devem ser transferidas para uma central de comando, a fim de se construir um índice geral. Essa transferência de dados pode ser bastante reduzida usando algum dos seguintes métodos:
 
*Compressão: as páginas coletas e armazenadas podem ser comprimidas antes de serem enviadas a uma localização central.
 
*Diferença: ao invés de mandar uma imagem inteira de todas as páginas coletadas por um processo, é possível mandar apenas a diferença entre a imagem corrente e a anterior. Isso pode reduzir o tráfego porque muitas páginas são estáticas e não costumam ser atualizadas com muita frequência.
 
*Sumarização: em muitos casos é necessário apenas um índice central, e não as páginas originais. Nesses casos, apenas as informações relevantes precisam ser enviadas ao centro de comando.
 
Fica claro que para a construção de Web crawlers efetivos é necessário muito mais do que apenas uma simples paralelização.
 
==== Arquitetura de um crawler paralelo ====
 
 
A figura acima nos mostra a arquitetura geral de um crawler paralelo, que consiste de múltiplos processos, referidos por <math>C-proc</math>. Cada <math>C-proc</math> é responsável por executar uma tarefa básica de um crawler não paralelo. Ele coleta páginas da Web, armazena as páginas localmente, extrai todas as URLs que encontrar e segue os [[w:en:Hyperlink|links]]. Dependendo da forma com que as tarefas são divididas entre os <math>C-proc</math>, pode ser necessário a troca de dados entre os processos. A distribuição de tarefas entre os <math>C-proc</math> pode ser feita numa rede local (como uma [[w:en:LAN|LAN]]), ou em localizações geograficamente distantes (como uma [[w:en:Wide area network|WAN]]).
 
*Intra-site crawler: quando todos os processos rodam em uma mesma rede local e se comunicam em alta velocidade. Na figura anterior, isso pode ser observado no caso onde todos os <math>C-proc</math> rodam na rede local da parte de cima.
 
*Crawler distribuído: quando todos os processos rodam em localizações geograficamente distantes. Quando os processos nessas localizações distantes se conectam via Internet, se torna importante determinar a frequência e a quando os processos devem se comunicar.
 
Em um crawler que roda com múltiplos processos, é possível ocorrer o problema da sobreposição. Para evitar esse problema, os processos devem ser coordenados entre eles para saber quais páginas cada um deve coletar. Essa coordenação pode ser feita seguindo algum dos caminhos:
 
*Independência: os <math>C-proc</math> podem coletar páginas de uma maneira completamente independente um dos outros sem qualquer coordenação. Cada processo começa com um conjunto de URLs e vai seguindo os links sem consultar outro processo. Neste cenário, o problema da sobreposição pode ocorrer.
 
*Assinalamento Dinâmico: ocorre quando existe uma central de comando que divide a Web em partições pequenas, usando para isto alguma função pré-estabelecida, e dinamicamente assinala cada partição a um processo. Essas partições podem ser feitas em diferentes granularidades, o que afeta a comunicação entre os processos e a central de comando.
 
*Assinalamento Estático: ocorre quando a Web é particionada e assinalada a cada <math>C-proc</math> antes de começar a coleta. Neste caso, cada <math>C-proc</math> sabe qual <math>C-proc</math> é responsável por qual página, não precisando de uma central de comando para isto.
 
==== Conclusão ====
 
Web crawlers vem sendo utilizados com cada vez mais frequência para coletar dados da Web para máquinas de busca, caches e [[w:en:Data mining|mineração de dados]]. Como o tamanho da Web aumenta a cada dia que passa, o uso de crawlers paralelos vem se tornando cada vez mais importante. Conforme observado nessa subseção, construir um crawler paralelo eficiente é muito mais complicado do que uma simples paralelização.
 
== Programação paralela na web ==
*Ambientes de programação
*Bibliotecas de programação
=== Linguagens de programação ===
 
O aumento da velocidade da conexão à internet pela maioria dos usuários permitiu que as páginas na web se tornassem verdadeiras aplicações, podendo até mesmo susbstituir algumas (como um editor de texto ou uma planilha eletrônica) que à pouco tempo atrás pensou-se ser inviável.
 
Essa sessão apresentará algumas linguagens voltadas para web e como tratar questões de paralelização e concorrência em cada uma delas.
 
==== Java Script ====
 
Essa sessão terá como foco como carregar componenetes em paralelo em um site em HTML. Esses componenets podem ser arquivos em javascript, podendo ser extendidos a arquivos css, ou imagens. Ápos isso será abordado a questão do AJAX principalmente usando o objeto XmlHttpResquest.
 
===== Carregando componentes em paralelo =====
 
O número de conexões HTTP que o cliente abre com o servidor é definida pelo navegador. Navegadores atuais geralmente abrem muitas conexões com o mesmo site quando se requisita uma página (esse número de conexões depende do navegador em questão[http://www.mozilla.org/quality/networking/docs/netprefs.html], mas navegadores antigos abrem no máximo duas conexões com o servidor [http://support.microsoft.com/kb/183110]. Isso permite que o navegador faça download dos componentes paralelamente, baixando o site mais rápido. Figuras são um bom exemplo de componentes que são baixados paralelas, automaticamente, pelo navegador. Mas arquivos javascript não são.
 
Quando você carrega arquivos em javascript na sua página, na forma usual, eles são carregados em sequência:
 
<pre>
<script src="Arquivo1.js" type="text/javascript"></script>
<script src="Arquivo2.js" type="text/javascript"></script>
</pre>
 
[[Imagem:LppFig1.png]]
 
O tamanho dos arquivo em javascript tem crescido muito, e está se tornando comum páginas com chamadas à muitos arquivos grandes. Isso pode deixar a página lenta e bem de desagrádavel para o usuário. A saída é carregar esses arquivos em paralelo:
 
 
é claro que se a conexão do usuário é ruim carregar os scripts em paralelo não resolve muita coisa.
 
Uma das maneiras de se fazer isso é usar um document.write:
 
 
<pre>
<script type="text/javascript">
 
document.writeln("<script src='Arquivo1.js' type='text/javascript'><" + "/script>");
 
document.writeln("<script src='Arquivo2.js' type='text/javascript'><" + "/script>");
 
</script>
</pre>
 
O navegardor abrirá duas conexões com o host e fazendo os downlaods dos arquivo em paralelo. Entretanto a execução dos mesmo é sequencial. Mas se Arquivo2.js for carregado e o usuário pára o carregamento da página enquando o Arquivo1 ainda é baixado o Arquivo2.js será executado (isso pode não ser válido para o internet explorer).
O número de arquivos, ou qualquer outro componente que é baixado separadamente como imagens, que podem ser baixados em paralelo, usando esse esquema, é limitado pelo número de conexões que navegador pode fazer com o host. Para se estender o número de conexões paralelas é necessário mudar o nome do host, criando alias para o nome do host, por exemplo imagens1.exemplo.com e imagens2.exemplo.com.
<pre>
<img src="imagem1.png" />
 
<img src="imagem2.png" />
 
<img src="http://imagens1.examplo.com/imagem3.png" />
 
<img src="http://imagens1.example.com/image4.png" />
 
<img src="http://imagens2.example.com/image5.png" />
 
<img src="http://imagens2.example.com/image6.png" />
</pre>
 
Atualmente os navegadores abrem muitas conexões em paralelo, e ainda é póssivel aumentar esse número. Esse último esquema é mais útil para navegadores limitados a somente duas conexões.
 
===== AJAX (requisições concorrentes) =====
 
A algum tempo atrás o modelo clássico das aplicações na web era puramente sequêncial. Você tinha uma seqüência de chamadas de funções e elas sempre eram executadas em uma certa ordem. Mas a forma de programar para web mudou. As aplicações aumentaram de porte. Muito disso deve-se ao conjunto de tecnologias AJAX.
 
A razão pela qual o AJAX se tornou tão popular deve-se a sua capacidade de realizar ações concomitantes ou por "traz dos panos" para o usuário. Entretanto não existe uma real concorrência em javascript, muito menos processamento paralelo. Mas é póssivel criar uma ilusão de certo grau de concorrência.
 
Um dos modos de se trabalhar com AJAX é recuperando os dados de forma assíncrona usando o objeto XMLHttpRequest. Há duas maneiras de se fazer uma requisição com um objeto XMLHttpRequest, uma é síncrona, outra assíncrona. No modo síncrono, quando você manda o objeto fazer uma requisição, o seu script é interrompido esperando pelo retorno. Quando a chamada é assíncrona, logo que a chamada é feita o fluxo de execução volta para o script, permitindo que ele execute outras funções ou ainda outras chamadas ao objeto. Como a essa chamadas não são realmente concorrentes a ordem que elas são feitas é um fator importante. O que define uma chamada como síncrona ou assíncrona é o terceiro parâmetro do método open do objeto. Um modelo clássico de fazer chamadas ao XMLHttpRequest é esse:
 
<pre>
var req;
function loadXMLDoc(url)
{
req = null;
// Procura por um objeto nativo (Mozilla/Safari)
if (window.XMLHttpRequest) {
req = new XMLHttpRequest();
req.onreadystatechange = processReqChange;
req.open("GET", url, true);
req.send(null);
// Procura por uma versão ActiveX (IE)
}
else if (window.ActiveXObject) {
req = new ActiveXObject("Microsoft.XMLHTTP");
if (req) {
req.onreadystatechange = processReqChange;
req.open("GET", url, true);
req.send();
}
}
}
 
function processReqChange()
{
if (req.readyState == 4) {
if (req.status == 200) {
document.getElementById('teste').innerHTML += '<br><br> Nova Requisição'+req.responseText;
} else {
alert("Houve um problema ao obter os dados:\n" + req.statusText);
}
}
}
</pre>
 
Fazer chamadas ao ao método open em sequência, sem que a primeira chamada tenha sido concluída costuma não funcionar e os resultados são inesperados. O que gerealmente é feito é criar uma fila de chamadas e executa-las sequencialmente:
 
<pre>
function insereFila(id,url){
//insere na fila
fila[fila.length]=[id,url];
//Se não há conexões pendentes, executa
if((ifila+1)==fila.length)executa();
}
 
//Executa a próxima conexão da fila
function executa(){
req.open("GET",fila[ifila][1],true);
req.onreadystatechange=function() {
if (xmlhttp.readyState==4){
document.getElementById(fila[ifila][0]).innerHTML=req.responseText;
//Roda o próximo
ifila++;
if(ifila<fila.length)setTimeout("executa()",20);
}
}
req.send(null);
}
</pre>
 
Ou ainda é póssivel criar outros objetos XMLHttpRequest.
 
 
 
==== PHP ====
 
PHP não é uma linguagem multithread, mas é póssivel simular paralelismo utilizando multiprocesso. Quando um processo pai cria um processo filho ambos os processos são executados concorrentemente. Isso é póssivel em PHP através do PHP Process Control Functions (PNCTL). Para isso o pacote PHP deve ser compilado com a opção --enable-pcntl, disponível somente em sistemas linux.
 
Essas função não deveriam ser usadas dentro de um servidor web e resultados inesperados podem ser obtidos quando isso é feito [http://www.php.net/manual/en/ref.pcntl.php].
 
Esse é um exemplo simples de criação de um processo em PHP:
 
<pre>
$pid = pcntl_fork();
 
if($pid) {
//o que deve ser rodado no processo pai
echo "pai";
}
else {
// o que deve ser rodado no processo filho
echo "filho";
}
</pre>
 
===== Principais funções =====
 
Essas são as principais funções para criação e manipulação de processos:
 
* Int pcntl_alarm (interno $ segundos)
 
Cria um temporizador que envia um sinal SIGALRM para um processo. Qualquer nova chamada a pcntl_alarm cancela a anterior.
 
* void pcntl_exec ( string $path [, array $args [, array $envs ]] )
 
Executa um programa no espaço de mémoria do processo conrrente. O primeiro argumento é o caminho para o programa. O segundo é um vetor de argumentos passados ao programa.
 
* int pcntl_fork ( void )
 
Essa função cria um processo filho que difere do precesso pai pelo PID ou PPID. Equivale à uma chamada ao fork() do sistema.
 
* bool pcntl_signal ( int $signo , callback $handler [, bool $restart_syscalls ] )
 
envia um sinal definido por signo.
 
* int pcntl_wait ( int &$status [, int $options ] )
 
O processo atual suspende sua execução e aguarda até que determinado sinal seja emitido.
 
 
==== JAVA ====
 
Nessa seção estaremos vendo detalhes da implementação de aplicações multitarefa usando a linguagem Java.
 
A linguagem Java fornece uma classe chamada Thread a partir da qual o programador pode criar suas próprias threads. Para isso, é preciso que o programador estenda essa classe e implemente as devidas customizações, reescrevendo o método run().
 
<pre>
public class ThreadSimples extends Thread {
public ThreadSimples(String str) {
super(str);
}
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println(i + " " + getName());
try {
sleep((long)(Math.random() * 1000));
} catch (InterruptedException e) {}
}
System.out.println("Pronto! " + getName());
}
}
</pre>
 
O método run() é onde colocamos toda a lógica de execução da thread. O método run() da classe ThreadSimples contém um loop que é executado 100 vezes. Em cada iteração, o método exibe na saída-padrão do sistema o número correspondente àquela iteração e o nome que foi associado à thread. Então, a thread entra em modo de espera de acordo com o retorno da chamada Math.random(). Quando o loop termina, o método run imprime Pronto! seguido do nome da thread.
 
No exemplo a seguir é usado duas threads da classe acima:
 
<pre>
public class exemplo {
public static void main (String[] args) {
new ThreadSimples("Jamaica").start();
new ThreadSimples("Fiji").start();
}
}
</pre>
 
Uma outra técnica que pode ser utilizada para implementação de threads na linguagem Java é o uso da interface Runnable:
 
<pre>
import java.awt.Graphics;
import java.util.*;
import java.text.DateFormat;
import java.applet.Applet;
 
public class Relogio extends Applet implements Runnable {
 
private Thread clockThread = null;
 
public void start() {
if (clockThread == null) {
clockThread = new Thread(this, "Clock");
clockThread.start();
}
}
 
public void run() {
Thread myThread = Thread.currentThread();
while (clockThread == myThread) {
repaint();
try {
Thread.sleep(1000);
} catch (InterruptedException e){
...
}
}
}
 
public void paint(Graphics g) {
Calendar cal = Calendar.getInstance();
Date date = cal.getTime();
DateFormat dateFormatter = DateFormat.getTimeInstance();
g.drawString(dateFormatter.format(date), 5, 10);
}
 
public void stop() {
clockThread = null;
}
}
</pre>
 
== Conclusão ==
 
Neste capítulo foi apresentado sobre algumas importantes aplicações paralelas que existem na Internet. A principal vantagem apresentadas por essas aplicações são o aumento da escalabilidade, desempenho e confiabilidade.
 
Inicialmente foram apresentadas algumas importantes aplicações sobre infra-estrutura, em seguida sobre aplicações distribuidas, e por último mostramos alguns recursos que linguagens de programação oferecem para a construção de aplicações paralelas para a Internet.
 
== Referências ==
 
* [http://www.deakin.edu.au/scitech/sit/dsapp/archive/upload/20071002_134654brock_06_appfti.pdf A Parallel Downloading Protocol for the Internet]
* [http://www.deakin.edu.au/scitech/sit/dsapp/archive/upload/20071002_135006Brock%202007%20-%20Preparing%20PHTTP%20for%20the%20Real%20World.pdf Preparing PHTTP for the Real World]
* [http://www.patentstorm.us/patents/6085251-fulltext.html Implementing a parallel file transfer protocol]
* [http://pages.cs.wisc.edu/~cs764-1/paralleldb.pdf Parallel Database Systems: The Future of High Performance Database Processing]
* [http://www.dba-oracle.com/art_ops1.htm Using parallel Oracle for high-speed e-commerce systems]
* [http://oak.cs.ucla.edu/~cho/papers/cho-parallel.pdf Parallel Crawlers]
* [http://www.clubedohardware.com.br/artigos/124/1 Computação em Grade - Uma Visão Introdutória]
* [http://en.wikipedia.org/wiki/Grid_computing Grid Computing]
* [http://www.inf.ufrgs.br/procpar/hetnos/grid/papers/open_grid.pdf Rodando Aplicações Paralelas Leves em Escala Mundial: A Perspectiva do Usuário]
* [http://en.wikipedia.org/wiki/Peer-to-peer Peer-to-Peer - Wikipedia]
* [http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212769,00.html Peer-to-Peer]
* [http://www.mozilla.org/quality/networking/docs/netprefs.html Mozilla Network Preferences]
* [http://blogs.msdn.com/kristoffer/archive/2006/12/22/loading-javascript-files-in-parallel.aspx Loading Javascript Files in parallel]
* [http://www.hunlock.com/blogs/Concurrent_Ajax Concurrent Ajax]
* [http://tableless.com.br/artigos/ajaxdemo/ Introdução ao Ajax]
* [https://blueprints.dev.java.net/ajax-faq.html#concurrent_requests Ajax faq for the JAVA developer]
* [http://www.hwhappy.co.uk/2006/11/07/concurrent-xml-queries-with-ajax/ Concurrent xml queries with ajax ]
* [http://www.lcmi.ufsc.br/~romulo/discipli/cad-ii2/thread-socket-java.pdf Thread em JAVA]
* [http://www.hristov.com/andrey/projects/php_stuff/pres/writing_parallel_apps_with_PHP.pdf Processo paralelos em PHP]
* [http://www.php.net/manual/en/ref.pcntl.php PHP Process Control Functions]
 
[[Categoria:Programação paralela em arquiteturas multicore|{{SUBPAGENAME}}]]
Utilizador anónimo