Processamento de Dados Massivos/Projeto e implementação de aplicações Big Data/Processamento de streams de tweets: diferenças entre revisões
Processamento de Dados Massivos/Projeto e implementação de aplicações Big Data/Processamento de streams de tweets (editar)
Revisão das 01h43min de 15 de fevereiro de 2013
, 15 de fevereiro de 2013→Geeser - A tool for processing raw tweet streams
[edição não verificada] | [edição não verificada] |
<syntaxhighlight lang="java">void declareOutputFields(OutputFieldsDeclarer declarer) </syntaxhighlight>
Declare the Output Filed on the outgoing tuple.
==== Topology Builder ====
====Communication====
Considering the requirements of this project which focus scalability and fault tolerance over latency. I evaluated the Storm capabilities of distributing process and making a massive stream scalable to be processed. The main results of this project is to build the foundation to many bolts and spouts designed specially to the Web Observatory project. It also helps the software development processes because each bolt is a black box that may be implemented by many different people in different languages.
===Load on Bolts===▼
For simple Twitter jobs, Storm managed to distribute jobs in a fair way. None worker node recived more jobs than another. This is a good result that shows that our system scales well enough for a huge twitter load.
[[File:BoltLoad.png|centro|Load on Bolts]]
▲===Load on Bolts===
===Nimbus Logs===
|