24
edições
== Conclusão ==
Em este projeto, apresentamos tres estrategias para tornar o LAC um classificador distribuido utilizando o Hadoop e analisamos diferentes formas de particionar o teste para tentar melhorar otimizar o acesso a cache de regras.
Como nossos experimentos demostram um fator de grande importância é a boa distribuição das instancias em vários grupos, isto aliado a estrategias de agrupamento, por similaridade ou ordenação temporal, pode levar a melhores resultados. Desta forma teremos uma melhor distribuição de carga conjuntamente com um melhor aproveitamento da cache interna do LAC.
== Implementação Utilizada ==
O código utilizado encontra-se disponivel no [https://github.com/rloliveirajr/BigDataML github].
{{AutoCat}}
|
edições