Diferenças entre edições de "Processamento de Dados Massivos/Projeto e implementação de aplicações Big Data/Mineração de Itemsets Frequentes"

Há também uma terceira versão, chamada SeqMR, que tem como objetivo auxiliar o usuário durante a etapa de desenvolvimento. Trata-se de uma versão sequencial para desenvolvimento. Portanto, caso o usuário não possua o ambiente de execução, este pode desenvolver a aplicação MapReduce usando SeqMR que não requer nenhum recurso além do gcc/g++. Finalizada a etapa de desenvovimento, o usuário deve então fazer pequenas adaptações no código para explorar o paralelismo intrínseco às tarefas de mapeamento e redução. São alterações como mudar a herança das classes de SeqMR para MapMP, no caso de memória compartilhada, ou para MaPI no caso de memória distribuída. Nesse último caso, faz-se necessária também a criação de serializadores e a inicialização dos servidores de mapeamento e redução.
 
Uma boa forma começar o desenvolvimento de aplicações usando implementações baseadas em MapReduce++ (alternativa àquela apresentada no paragrafo anterior) é baseando nos exemplos disponíveis no projeto. Visto que os dados da aplicação aqui discutida podem não caber em uma só máquina, a implementação MaPI é a mais indicada para o nosso propósito. A seguir, é apresentado um passo-a-passo desde o download até a execussãoexecução de um programa MaPI.
 
==== MaPI: Download ====
Utilizador anónimo