Pesquisa operacional/Introdução à Programação Linear: diferenças entre revisões

[edição não verificada][edição não verificada]
Conteúdo apagado Conteúdo adicionado
Linha 129:
 
O polígono mais escuro que representa os pontos que atendem à todas as restrições possui como vértices os pontos (0,0), (3,0), (3,3) e (1,4). O lucro em (0,0) é 0$. Em (3,0) é 3$. Em (3,3) é 9$. Em (1,4) é 9$. Neste exemplo, não existe apenas um único ponto que representa o máximo da função - existem infinitos pontos. Todos aqueles que pertencem ao Domínio e estão na reta que liga (3,3) e (1,4) são o máximo da função e representam a quantidade ideal de produção de pastéis e cachorros-quentes para o vendedor ambulante. Como o vendedor ambulante não pode fazer um número fracionário de pastéis e cachorros, quentes, a resposta é: 3 pastéis e 3 cachorros-quentes ou então 1 pastel e 4 cachorros-quente.
 
'''2.''' Temos que resolver o modelo:
 
Máx <math>Z = 50B + 20T</math> sujeito às seguintes restrições:
 
<math>T \leq 4</math>
 
<math>B + 2T \geq 9</math>
 
<math>T, B \geq 0</math>
 
Perceba que não é possível resolver este modelo. Não existe nenhuma informação que limite superiormente o número de bombardeiros que temos disponíveis. Logo, podemos simplesmente dizer que o melhor é atacar com infinitos bombardeiros. Isso é um absurdo. É uma solução inconcebível. Modelos com solução infinita costumam ocorrer quando algum tipo de restrição é omitida do modelo.
 
'''3.''' Isso acrescenta uma nova restrição ao modelo:
 
<math>B \leq 5</math>
 
Agora sim podemos resolver o modelo. Tente desenhar o gráfico do Domínio desta função-objetivo. Ele gera um triângulo com três vértices. A resposta é que devemos enviar 4 tanques e 5 bombardeiros para que causemos em média 330 baixas no inimigo.