Computação Quântica/Postulados

Postulados da Mecânica Quântica

editar

Primeiro

editar

Fala sobre: Estados quânticos como vetores em um espaço de Hilbert.


Postulado: Todo sistema físico isolado está associado a um um espaço de Hilbert (ou seja, um espaço vetorial com produto interno) conhecido como o espaço de estados do sistema. O sistema é descrito completamente pelo seu vetor de estado, que é um vetor unitário no espaço de estados do sistema.


Segundo

editar

Fala sobre: Transformações unitários como sendo os operadores válidos num sistema quântico.


Postulado: A evolução de um sistema quântico fechado é descrita por transformações unitárias. Isso é, o estado do sistema   no momento   está relacionado ao estado   no momento   por um operador U que depende apenas dos momentos   e  ,  


Terceiro

editar

Fala sobre: Operadores de medição como sendo projetores em subespaços.


Postulado: Medições quânticas são descritas por uma coleção   de operadores de medição. Estes são operadores atuantes no espaço de estados do sistema que está sendo medido. O indice m refere-se ao resultado da medição que pode ocorrer no experimento. Se o estado do sistema quântico é   imediatamente depois da medição, então a probabilidade do resultado m ocorrer é dada por   e o estado do sistema depois da medição é  .

Os operadores de medição satisfazem a equação de completude:  .

A equação de completude expressa que a soma das probabilidades é igual a 1:  .


Quarto

editar

Fala sobre: O produto tensorial como operador de construção de sistemas quânticos compostos.


Postulado: O espaço de estados de um sistema quântico composto é o produto tensorial dos espaços de estados dos sistemas físicos componentes. Desta forma, se temos sistemas numerados de 1 a n, e o sistema número i está preparado no estado  , então o estado total do sistema é dado por  .