1.1 Axioma do Ponto e Reta: Ao dizer que um ponto pertence a uma reta, a existência desse ponto na reta é unívoca, ou seja, o ponto não pode estar fora da reta ou em dois lugares na reta ou em outra reta(a não ser se estiver na intersecção), uma vez que pertence a reta.
Ex.: Dado A um ponto e r uma reta, se , então é absurdo dizer que e se , então é absurdo dizer que .
1.2 Axioma do Ponto e Plano: Ao dizer que um ponto pertence a um plano, a existência desse ponto no plano é unívoca, ou seja, o ponto não pode estar em dois lugares no plano ou em outro plano(a não ser na intersecção) e nem fora desse plano, uma vez que pertence ao plano.
Ex.: Dado A um ponto e um plano, se , então é absurdo dizer que e se , então é absurdo dizer que .
1.3 Axioma de dois pontos distintos de uma reta: Ao dizer que existem dois pontos pertencente a uma reta, a existência desses pontos na reta é unívoca: ou são o mesmo ponto ou são distintos.
Ex: Dado , então é absurdo dizer que e se , então é absurdo dizer que .