- Avriel, Mordecai. Nonlinear Programming: Analysis and methods. New York: Dover, 2003. 528 p. ISBN 0486432270
- Izmailov, Alexey; Solodov, Mikhail. Otimização: Condições de Otimalidade, Elementos de Análise Convexa e de Dualidade. 1ª.ed. Rio de Janeiro: IMPA, 2005. 253 p. 2 v. v. 1. ISBN 8524402385
- Izmailov, Alexey; Solodov, Mikhail. Otimização: Métodos Computacionais. 1ª.ed. Rio de Janeiro: IMPA, 2007. 458 p. 2 v. v. 1. ISBN 9788524402685
- Hiriart-Urruty, Jean-Baptiste, Lemaréchal, Claude. Fundamentals of Convex Analysis. Springer, 2001. ISBN 3540422056
- [confirmar] Fletcher, Roger; Fitches, W. R.. Practical Methods of Optimization. Wiley, 1987.
- [confirmar] Dixon, ???. Practical optimization.
- Crouzeix, Jean Pierre; Keraghel, Abdelkrim; Sosa, Wilfredo. Programmation Mathematique Differential. 2008.
- Hestenes, Magnus R.; Stiefel, Eduard. Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards. v. 49 (6). Dezembro, 1952.
- Polak, E.; Ribière, G..Note sur la convergence de directions conjugées. Rev. Francaise Informat Recherche Operationelle, 3e Année 16 (1969) 35-43.
- Fletcher, R.; Reeves, CM.Function minimization by conjugate gradients. The Computer Journal, 1964 - Br Computer Soc.
- Courant, R..Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc., 49, 1-23, 1943.
- Finsler, P.. Uber das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen. Commentaria Mathematicae Helvetia. Vol. 9. pp. 188-192, 1937.