Logística/Técnicas de previsão/Transformações e ajustamentos
O ajuste de dados históricos leva, por vezes, a modelos de previsão mais simples e facilmente interpretáveis. Existem três tipos de ajuste (Makridakis, 1998, p. 63):
- Transformações matemáticas (tais como logaritmos e raízes quadrados);
- Ajustes para remover a variação dos dados relativa a efeitos do calendário;
- Ajustes relacionados com mudanças e aumento da população.
Transformações matemáticas
À aplicação de uma alteração matemática nos valores de uma variável dá-se o nome de transformação de dados. Existe uma grande variedade de transformações possíveis, como a adição ou multiplicação de constantes, elevação a uma potência, conversão para escalas logarítmicas, tomar o inverso, simétrico ou a raiz quadrada dos valores ou aplicação de transformações trigonométricas tais como o seno. (Osbourne, [2002])
A raiz quadrada e o logaritmo são as transformações mais úteis. A função raiz quadrada ajuda a reduzir a variação do tamanho dos ciclos anuais, facilitando assim, a previsão dos dados, enquanto que os logaritmos são mais fáceis de interpretar (alterações no valor do logaritmo levam a alterações percentuais na escala original). Uma lista das transformações mais úteis é apresentada na tabela seguinte (Makridakis, 1998, p. 63-70):
Raiz quadrada | |||||||||
Raiz cúbica | |||||||||
Logaritmo | |||||||||
Simétrico do inverso | |||||||||
Onde são as observações originais e as observações transformadas.
Cada uma destas transformações pertence à família das transformações de potência:
Para a transformação é simplesmente , para é a raiz quadrada e para é o simétrico do inverso. Para a transformação está definida como o logaritmo porque comporta-se como tal para valores de próximos de . Para , o sinal negativo na transformação de potência é usado para que todas as transformações resultem em funções crescentes (a variável transformada aumenta com o aumento de ). O parâmetro pode ser qualquer número se os dados forem positivos, superior a zero se estes tiverem zeros e se forem negativos não é possível utilizar transformações de potência a não ser que estas sejam ajustadas primeiro através da adição de uma constante a todos os valores.
As previsões são calculadas nos dados transformados em vez de nos originais. No entanto é necessário reverter a transformação porque o interesse está na previsão dos dados originais. As transformações revertidas da potência são geralmente dadas por:
Por exemplo, obtém-se a previsão da escala original elevando ao quadrado as previsões da raiz quadrada dos dados.
É preferível escolher valores mais simples de para fazer as transformações presentes na Tabela 1. Valores próximos de produzirão resultados semelhantes porque os modelos e previsões de séries temporais são relativamente insensíveis ao valor de escolhido. No entanto, valores de tais como , ou torna mais fácil a interpretação dos resultados. Há ainda a possibilidade de não ser necessário efectuar qualquer transformação, como no caso de .
Após a transformação dos dados, é necessário transformar também os intervalos de previsão de volta para a escala original. A maneira mais simples de proceder é aplicar a transformação inversa nos limites do intervalo de previsão. Portanto, caso tenham sido usados logaritmos, e a previsão na escala de logaritmos for e o intervalo de previsão (,), então a previsão na escala original será com o intervalo de previsão (,). Estes intervalos de previsão não necessitam de ser simétricos à volta da previsão.
O impacto das transformações na precisão das previsões nem sempre é importante tal como é demonstrado em certos estudos empíricos. Esta situação deve-se ao facto da maioria das técnicas de previsão valorizarem mais os dados mais recentes. Portanto, é natural que uma pequena variação no início de uma série não afecte consideravelmente as previsões. As transformações matemáticas fazem a grande diferença apenas quando as séries alteram rapidamente a sua variação.
No entanto, o EQM (e outras medidas de precisão) dão igual importância a todos os dados daí que os intervalos de previsão sejam afectados pelas transformações. No cálculo de intervalos de previsão, assume-se que a variação é aproximadamente constante ao longo da série.
Referências
- OSBOURNE, Jason W. - Notes on the use of data transformations [Em linha]. North Carolina State University, 2002. [Consult. 17 Mai. 2011]. Disponível em WWW:<URL:http://pareonline.net/getvn.asp?v=8&n=6>.