Matemática elementar/Exponenciais

Definição de PotênciaEditar

Em matemática, potências são valores que representam uma multiplicação sucessiva de um número, ou seja, representam o mesmo número multiplicado algumas vezes por si mesmo. Uma potência é composta por um número, chamado base, que é multiplicado sucessivamente por si mesmo; e por um índice, chamado expoente, que diz o número de vezes que a base é multiplicada por si mesmo. As potências apresentam-se na forma  , onde n é o expoente e x é a base.

A potência  , por exemplo, indica que a base, o número 4, será multiplicada sucessivamente 3 vezes por si mesma, ou seja  . Se o expoente é 1, então o resultado tem o valor da base ( ), enquanto que com um expoente 0, devido a regras de operações feitas diretamente com potências, o resultado é sempre igual a 1 (  = 1).

A regra para o expoente zero pode parecer estranha. Mas se não fosse assim, todas as propriedades de potências ficariam mais complicadas. Além disto, quem olhar um gráfico de uma função exponencial vai ver que não poderia ser de outra forma. Enfim, tudo induz para que aceitemos esta forma de definir as potências com expoente 0.

Operações com PotênciasEditar

Existem várias regras que visam facilitar a resolução de potências. É possível multiplicar e dividir qualquer par de potências que possuam a mesma base, o mesmo expoente, ou os dois iguais.

MultiplicaçãoEditar

Com a mesma baseEditar

  Para efetuar a multiplicação de potências com as bases iguais e expoentes diferentes, mantém-se a base e somam-se os expoentes.

Com o mesmo expoenteEditar

  Para multiplicar duas potências com os expoentes iguais e bases diferentes, mantém-se o expoente e multiplicam-se as bases.

Com a mesma base e o mesmo expoenteEditar

 
 

Para multiplicar duas potências com os expoentes iguais e as bases também iguais, pode-se utilizar qualquer uma das regras.

DivisãoEditar

Com a mesma baseEditar

  Para dividir duas potências com as bases iguais e expoentes diferentes, mantém-se a base e subtraem-se os expoentes.

Com o mesmo expoenteEditar

  Para dividir duas potências com os expoentes iguais e bases diferentes, mantém-se o expoente e dividem-se as bases.

Com a mesma base e o mesmo expoenteEditar

  (1)
 
Para dividir duas potências com os expoentes iguais e as bases também iguais, pode-se utilizar qualquer uma das regras.

(1) - Este caso nos dá mais um motivo para tomarmos qualquer potência com expoente 0 como sendo igual a 1. Como   e   então  .

Observe que isto não é a prova que   pois foi utilizada uma propriedade para subtrair os expoentes, propriedade esta que, para ser provada, necessita que seja considerado   , logo, não pode ser provada utilizando a equação acima.

Equações envolvendo potênciasEditar

Equações do tipo af(x) = bg(x)Editar

Equações do tipo

 

onde a é uma constante são resolvidas simplesmente igualando-se f(x) a g(x).

No caso mais geral:

 

é preciso, primeiro, converter uma (ou ambas) bases para que as duas bases fiquem iguais.

ExemploEditar

  • Resolva:
 

O primeiro passo é transformar as bases. No caso, pode-se transformar   ou   (exercício), mas é bem mais simples transformar   e  :

 

Aplicando a propriedade  :

 

Agora temos uma equação da forma  :

 
 
 

Verificando:

  (ok)

Equações do tipo f(ax) = 0Editar

As equações do tipo

 

são resolvidas de forma análoga à biquadrada. Lembrando: uma biquadrada   é resolvida pela substituição  . Resolve-se a equação em y, e, com o(s) valor(es) de y, resolve-se a equação em x.

ExemploEditar

  • Resolva a equação
 

De novo, como temos bases diferentes, é conveniente reescrever tudo para a mesma base. Como  , temos:

 

Usando agora a propriedade  :

 


Ainda temos um problema! É preciso transformar   em uma expressão onde   esteja isolado. Para isto, vamos usar a propriedade  :

 

Então a expressão fica:

 

Resolvendo:

 
 
 

Aplicando a fórmula de Bhaskara:

 
 
 

Ou seja, as duas raízes são:

 
 

A primeira solução, y = -3, gera uma equação sem solução em x, porque   é sempre um valor positivo e não pode ser igual a -3.

A segunda solução fornece:

 

Ou seja:

x = -1

Verificando, temos que:

  (ok)

Inequações envolvendo potênciasEditar

Gráficos de funções exponenciaisEditar

ExercíciosEditar

81²+81²+81²=

Ver tambémEditar

A Wikipédia tem mais sobre este assunto:
Exponenciação
O Wikisource tem material relacionado a este artigo: Potências e raízes dos números
 

Esta página é um esboço de matemática. Ampliando-a você ajudará a melhorar o Wikilivros.