Matemática elementar/Conjuntos/Números reais

Conceito

editar

Em matemática, potências são valores que representam uma multiplicação sucessiva de um número, ou seja, representam o mesmo número multiplicado algumas vezes por si mesmo. Uma potência é composta por um número, chamado base, que é multiplicado sucessivamente por si mesmo; e por um índice, chamado expoente, que diz o número de vezes que a base é multiplicada por si mesma. As potências apresentam-se na forma   onde n é o expoente e x é a base.

A potência   por exemplo, indica que a base, o número 4, será multiplicada sucessivamente 3 vezes por si mesma, ou seja   Se o expoente é 1, então o resultado tem o valor da base ( ), enquanto que com um expoente 0, devido a regras de operações feitas diretamente com potências, o resultado é sempre igual a 1 (  = 1).

Propriedades da potenciação

editar

Primeira propriedade

editar

Ao multiplicar potências de mesma base, repetimos a base e somamos os expoentes.

 

Segunda propriedade

editar

Ao dividir potências de mesma base, repetimos a base e subtraímos os expoentes.

 

Terceira propriedade

editar

Ao elevar uma potência a um outro expoente, repetimos a base e multiplicamos os expoentes.

 

Quarta propriedade

editar

Ao elevar um produto ou um quociente a um expoente, elevamos cada um dos fatores a esse expoente ou, no caso do quociente, elevamos o dividendo e também o divisor ao mesmo expoente.

 

Equivalência entre bases

editar

É importante perceber que, mesmo com bases diferentes, podemos torná-las iguais para efetuar uma operação. Exemplo:

 

Podemos substituir 4 por 22:

 

Expoentes negativos

editar

Quando temos um número elevado a n em que n < 0, podemos dizer que:

 

Observe que a fração foi invertida e o sinal negativo do expoente desapareceu. Exemplo:

 

Tópicos

  1. Definição de Potência
  2. Operações com potências
    1. Multiplicação
      1. Com a mesma base
      2. Com o mesmo expoente
      3. Com a mesma base e o mesmo expoente
    2. Divisão
      1. Com a mesma base
      2. Com o mesmo expoente
      3. Com a mesma base e o mesmo expoente
  3. Equações envolvendo potências
  4. Inequações envolvendo potências
  5. Gráficos de funções exponenciais

Exercícios

editar

Ver: Matemática elementar/Exponenciais/Exercícios

Radiciação

editar

Propriedades da radiciação

editar

Racionalização de denominadores

editar

Exercícios

editar

Ver: Matemática elementar/Números reais/Exercícios

Intervalos reais

editar

Intuitivamente, um intervalo real é um subconjunto dos números reais que não tem nenhum buraco. Ou seja, se I é um intervalo, a e b são elementos deste intervalo com a < b, então todo número entre a e b também pertence ao intervalo.

Os intervalos são classificados de acordo com seus extremos (o extremo superior e o extremo inferior). Cada extremo pode ser ilimitados, limitado e aberto ou limitado e fechado.

Representa-se o intervalo através do seu limite inferior, seguido da vírgula (ou ponto-e-vírgula) e o limite superior.

Costuma-se representar o limite inferior por:

  •   - ilimitado
  •   - limitado e aberto
  •   - limitado e fechado

Sendo o limite superior representado por:

  •   - ilimitado
  •   - limitado e aberto
  •   - limitado e fechado

Por exemplo:

  •   - é o conjunto dos números reais não-positivos
  •   - é o conjuntos dos números reais x em que x ≥ 1 e x < 2

Exercícios

editar

Ver: Matemática elementar/Números reais/Intervalos reais/Exercícios

Veja também

editar

Wikipédia

editar